
Chapter 16

Applications and Case Studies

In this final chapter we present a few case studies of reinforcement learning. Several of these are
substantial applications of potential economic significance. One, Samuel’s checkers player, is primarily
of historical interest. Our presentations are intended to illustrate some of the trade-offs and issues that
arise in real applications. For example, we emphasize how domain knowledge is incorporated into the
formulation and solution of the problem. We also highlight the representation issues that are so often
critical to successful applications. The algorithms used in some of these case studies are substantially
more complex than those we have presented in the rest of the book. Applications of reinforcement
learning are still far from routine and typically require as much art as science. Making applications
easier and more straightforward is one of the goals of current research in reinforcement learning.

16.1 TD-Gammon

One of the most impressive applications of reinforcement learning to date is that by Gerald Tesauro
to the game of backgammon (Tesauro, 1992, 1994, 1995, 2002). Tesauro’s program, TD-Gammon,
required little backgammon knowledge, yet learned to play extremely well, near the level of the world’s
strongest grandmasters. The learning algorithm in TD-Gammon was a straightforward combination of
the TD(λ) algorithm and nonlinear function approximation using a multilayer neural network trained
by backpropagating TD errors.

Backgammon is a major game in the sense that it is played throughout the world, with numerous
tournaments and regular world championship matches. It is in part a game of chance, and it is a popular
vehicle for waging significant sums of money. There are probably more professional backgammon players
than there are professional chess players. The game is played with 15 white and 15 black pieces on a
board of 24 locations, called points. Figure 16.1 shows a typical position early in the game, seen from
the perspective of the white player.

In this figure, white has just rolled the dice and obtained a 5 and a 2. This means that he can move
one of his pieces 5 steps and one (possibly the same piece) 2 steps. For example, he could move two
pieces from the 12 point, one to the 17 point, and one to the 14 point. White’s objective is to advance
all of his pieces into the last quadrant (points 19–24) and then off the board. The first player to remove
all his pieces wins. One complication is that the pieces interact as they pass each other going in different
directions. For example, if it were black’s move in Figure 16.1, he could use the dice roll of 2 to move a
piece from the 24 point to the 22 point, “hitting” the white piece there. Pieces that have been hit are
placed on the “bar” in the middle of the board (where we already see one previously hit black piece),
from whence they reenter the race from the start. However, if there are two pieces on a point, then the
opponent cannot move to that point; the pieces are protected from being hit. Thus, white cannot use
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Figure 16.1: A backgammon position

his 5–2 dice roll to move either of his pieces on the 1 point, because their possible resulting points are
occupied by groups of black pieces. Forming contiguous blocks of occupied points to block the opponent
is one of the elementary strategies of the game.

Backgammon involves several further complications, but the above description gives the basic idea.
With 30 pieces and 24 possible locations (26, counting the bar and off-the-board) it should be clear
that the number of possible backgammon positions is enormous, far more than the number of memory
elements one could have in any physically realizable computer. The number of moves possible from each
position is also large. For a typical dice roll there might be 20 different ways of playing. In considering
future moves, such as the response of the opponent, one must consider the possible dice rolls as well.
The result is that the game tree has an effective branching factor of about 400. This is far too large to
permit effective use of the conventional heuristic search methods that have proved so effective in games
like chess and checkers.

On the other hand, the game is a good match to the capabilities of TD learning methods. Although
the game is highly stochastic, a complete description of the game’s state is available at all times. The
game evolves over a sequence of moves and positions until finally ending in a win for one player or
the other, ending the game. The outcome can be interpreted as a final reward to be predicted. On
the other hand, the theoretical results we have described so far cannot be usefully applied to this task.
The number of states is so large that a lookup table cannot be used, and the opponent is a source of
uncertainty and time variation.

TD-Gammon used a nonlinear form of TD(λ). The estimated value, v̂(s,w), of any state (board
position) s was meant to estimate the probability of winning starting from state s. To achieve this,
rewards were defined as zero for all time steps except those on which the game is won. To implement the
value function, TD-Gammon used a standard multilayer neural network, much as shown in Figure 16.2.
(The real network had two additional units in its final layer to estimate the probability of each player’s
winning in a special way called a “gammon” or “backgammon.”) The network consisted of a layer
of input units, a layer of hidden units, and a final output unit. The input to the network was a
representation of a backgammon position, and the output was an estimate of the value of that position.

In the first version of TD-Gammon, TD-Gammon 0.0, backgammon positions were represented to
the network in a relatively direct way that involved little backgammon knowledge. It did, however,
involve substantial knowledge of how neural networks work and how information is best presented to
them. It is instructive to note the exact representation Tesauro chose. There were a total of 198 input
units to the network. For each point on the backgammon board, four units indicated the number of
white pieces on the point. If there were no white pieces, then all four units took on the value zero. If
there was one piece, then the first unit took on the value 1. This encoded the elementary concept of a
“blot,” i.e., a piece that can be hit by the opponent. If there were two or more pieces, then the second
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unit was set to 1. This encoded the basic concept of a “made point” on which the opponent cannot
land. If there were exactly three pieces on the point, then the third unit was set to 1. This encoded
the basic concept of a “single spare,” i.e., an extra piece in addition to the two pieces that made the
point. Finally, if there were more than three pieces, the fourth unit was set to a value proportionate
to the number of additional pieces beyond three. Letting n denote the total number of pieces on the
point, if n > 3, then the fourth unit took on the value (n− 3)/2. This encoded a linear representation
of “multiple spares” at the given point.

With four units for white and four for black at each of the 24 points, that made a total of 192 units.
Two additional units encoded the number of white and black pieces on the bar (each took the value
n/2, where n is the number of pieces on the bar), and two more encoded the number of black and white
pieces already successfully removed from the board (these took the value n/15, where n is the number
of pieces already borne off). Finally, two units indicated in a binary fashion whether it was white’s or
black’s turn to move. The general logic behind these choices should be clear. Basically, Tesauro tried
to represent the position in a straightforward way, while keeping the number of units relatively small.
He provided one unit for each conceptually distinct possibility that seemed likely to be relevant, and
he scaled them to roughly the same range, in this case between 0 and 1.

Given a representation of a backgammon position, the network computed its estimated value in the
standard way. Corresponding to each connection from an input unit to a hidden unit was a real-valued
weight. Signals from each input unit were multiplied by their corresponding weights and summed at
the hidden unit. The output, h(j), of hidden unit j was a nonlinear sigmoid function of the weighted
sum:

h(j) = σ
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)
=
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where xi is the value of the ith input unit and wij is the weight of its connection to the jth hidden unit
(all the weights in the network together make up the parameter vector w). The output of the sigmoid
is always between 0 and 1, and has a natural interpretation as a probability based on a summation
of evidence. The computation from hidden units to the output unit was entirely analogous. Each
connection from a hidden unit to the output unit had a separate weight. The output unit formed the
weighted sum and then passed it through the same sigmoid nonlinearity.

TD-Gammon used the semi-gradient form of the TD(λ) algorithm described in Section 12.2, with the
gradients computed by the error backpropagation algorithm (Rumelhart, Hinton, and Williams, 1986).
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gation algorithm (Rumelhart, Hinton, and Williams, 1986). Recall that the
general update rule for this case is

wt+1 = wt + ↵
h
Rt+1 + �v̂(St+1,wt)� v̂(St,wt)

i
et, (15.1)

where wt is the vector of all modifiable parameters (in this case, the weights
of the network) and et is a vector of eligibility traces, one for each component
of wt, updated by

et = ��et�1 +rwt v̂(St,wt),

with e0 = 0. The gradient in this equation can be computed e�ciently by the
backpropagation procedure. For the backgammon application, in which � = 1
and the reward is always zero except upon winning, the TD error portion of the
learning rule is usually just v̂(St+1,w)� v̂(St,w), as suggested in Figure 15.2.

To apply the learning rule we need a source of backgammon games. Tesauro
obtained an unending sequence of games by playing his learning backgammon
player against itself. To choose its moves, TD-Gammon considered each of the
20 or so ways it could play its dice roll and the corresponding positions that
would result. The resulting positions are afterstates as discussed in Section 6.8.
The network was consulted to estimate each of their values. The move was
then selected that would lead to the position with the highest estimated value.
Continuing in this way, with TD-Gammon making the moves for both sides,
it was possible to easily generate large numbers of backgammon games. Each
game was treated as an episode, with the sequence of positions acting as
the states, S0, S1, S2, . . .. Tesauro applied the nonlinear TD rule (15.1) fully
incrementally, that is, after each individual move.

The weights of the network were set initially to small random values. The
initial evaluations were thus entirely arbitrary. Since the moves were selected
on the basis of these evaluations, the initial moves were inevitably poor, and
the initial games often lasted hundreds or thousands of moves before one side
or the other won, almost by accident. After a few dozen games however,
performance improved rapidly.

After playing about 300,000 games against itself, TD-Gammon 0.0 as de-
scribed above learned to play approximately as well as the best previous
backgammon computer programs. This was a striking result because all the
previous high-performance computer programs had used extensive backgam-
mon knowledge. For example, the reigning champion program at the time
was, arguably, Neurogammon, another program written by Tesauro that used
a neural network but not TD learning. Neurogammon’s network was trained
on a large training corpus of exemplary moves provided by backgammon ex-
perts, and, in addition, started with a set of features specially crafted for
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Figure 16.2: The neural network used in TD-Gammon
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Recall that the general update rule for this case is

wt+1
.
= wt + α

[
Rt+1 + γv̂(St+1,wt)− v̂(St,wt)

]
zt, (16.1)

where wt is the vector of all modifiable parameters (in this case, the weights of the network) and zt is
a vector of eligibility traces, one for each component of wt, updated by

zt
.
= γλzt−1 +∇v̂(St,wt),

with z0
.
= 0. The gradient in this equation can be computed efficiently by the backpropagation pro-

cedure. For the backgammon application, in which γ = 1 and the reward is always zero except upon
winning, the TD error portion of the learning rule is usually just v̂(St+1,w)− v̂(St,w), as suggested in
Figure 16.2.

To apply the learning rule we need a source of backgammon games. Tesauro obtained an unending
sequence of games by playing his learning backgammon player against itself. To choose its moves, TD-
Gammon considered each of the 20 or so ways it could play its dice roll and the corresponding positions
that would result. The resulting positions are afterstates as discussed in Section 6.8. The network was
consulted to estimate each of their values. The move was then selected that would lead to the position
with the highest estimated value. Continuing in this way, with TD-Gammon making the moves for both
sides, it was possible to easily generate large numbers of backgammon games. Each game was treated
as an episode, with the sequence of positions acting as the states, S0, S1, S2, . . .. Tesauro applied the
nonlinear TD rule (16.1) fully incrementally, that is, after each individual move.

The weights of the network were set initially to small random values. The initial evaluations were
thus entirely arbitrary. Since the moves were selected on the basis of these evaluations, the initial moves
were inevitably poor, and the initial games often lasted hundreds or thousands of moves before one side
or the other won, almost by accident. After a few dozen games however, performance improved rapidly.

After playing about 300,000 games against itself, TD-Gammon 0.0 as described above learned to play
approximately as well as the best previous backgammon computer programs. This was a striking result
because all the previous high-performance computer programs had used extensive backgammon knowl-
edge. For example, the reigning champion program at the time was, arguably, Neurogammon, another
program written by Tesauro that used a neural network but not TD learning. Neurogammon’s network
was trained on a large training corpus of exemplary moves provided by backgammon experts, and, in
addition, started with a set of features specially crafted for backgammon. Neurogammon was a highly
tuned, highly effective backgammon program that decisively won the World Backgammon Olympiad in
1989. TD-Gammon 0.0, on the other hand, was constructed with essentially zero backgammon knowl-
edge. That it was able to do as well as Neurogammon and all other approaches is striking testimony to
the potential of self-play learning methods.

The tournament success of TD-Gammon 0.0 with zero expert backgammon knowledge suggested an
obvious modification: add the specialized backgammon features but keep the self-play TD learning
method. This produced TD-Gammon 1.0. TD-Gammon 1.0 was clearly substantially better than all
previous backgammon programs and found serious competition only among human experts. Later
versions of the program, TD-Gammon 2.0 (40 hidden units) and TD-Gammon 2.1 (80 hidden units),
were augmented with a selective two-ply search procedure. To select moves, these programs looked
ahead not just to the positions that would immediately result, but also to the opponent’s possible dice
rolls and moves. Assuming the opponent always took the move that appeared immediately best for him,
the expected value of each candidate move was computed and the best was selected. To save computer
time, the second ply of search was conducted only for candidate moves that were ranked highly after
the first ply, about four or five moves on average. Two-ply search affected only the moves selected; the
learning process proceeded exactly as before. The final versions of the program, TD-Gammon 3.0 and
3.1, used 160 hidden units and a selective three-ply search. TD-Gammon illustrates the combination of
learned value functions and decision-time search as in heuristic search and MCTS methods. In follow-on
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work, Tesauro and Galperin (1997) explored trajectory sampling methods as an alternative to full-width
search, which reduced the error rate of live play by large numerical factors (4x–6x) while keeping the
think time reasonable at ∼ 5–10 seconds per move.

Program Hidden Training Opponents Results
Units Games

TD-Gammon 0.0 40 300,000 other programs tied for best
TD-Gammon 1.0 80 300,000 Robertie, Magriel, ... −13 pts / 51 games
TD-Gammon 2.0 40 800,000 various Grandmasters −7 pts / 38 games
TD-Gammon 2.1 80 1,500,000 Robertie −1 pt / 40 games
TD-Gammon 3.0 80 1,500,000 Kazaros +6 pts / 20 games

Table 16.1: Summary of TD-Gammon Results

During the 1990s, Tesauro was able to play his programs in a significant number of games against
world-class human players. A summary of the results is given in Table 16.1. Based on these results and
analyses by backgammon grandmasters (Robertie, 1992; see Tesauro, 1995), TD-Gammon 3.0 appeared
to play at close to, or possibly better than, the playing strength of the best human players in the
world. Tesauro reported in a subsequent article (Tesauro, 2002) the results of an extensive rollout
analysis of the move decisions and doubling decisions of TD-Gammon relative to top human players.
The conclusion was that TD-Gammon 3.1 had a “lopsided advantage” in piece-movement decisions,
and a “slight edge” in doubling decisions, over top humans.

TD-Gammon had a significant impact on the way the best human players play the game. For example,
it learned to play certain opening positions differently than was the convention among the best human
players. Based on TD-Gammon’s success and further analysis, the best human players now play these
positions as TD-Gammon does (Tesauro, 1995). The impact on human play was greatly accelerated
when several other self-teaching neural net backgammon programs inspired by TD-Gammon, such
as Jellyfish, Snowie, and GNUBackgammon, became widely available. These programs enabled wide
dissemination of new knowledge generated by the neural nets, resulting in great improvements in the
overall caliber of human tournament play (Tesauro, 2002).

16.2 Samuel’s Checkers Player

An important precursor to Tesauro’s TD-Gammon was the seminal work of Arthur Samuel (1959,
1967) in constructing programs for learning to play checkers. Samuel was one of the first to make
effective use of heuristic search methods and of what we would now call temporal-difference learning.
His checkers players are instructive case studies in addition to being of historical interest. We emphasize
the relationship of Samuel’s methods to modern reinforcement learning methods and try to convey some
of Samuel’s motivation for using them.

Samuel first wrote a checkers-playing program for the IBM 701 in 1952. His first learning program
was completed in 1955 and was demonstrated on television in 1956. Later versions of the program
achieved good, though not expert, playing skill. Samuel was attracted to game-playing as a domain for
studying machine learning because games are less complicated than problems “taken from life” while
still allowing fruitful study of how heuristic procedures and learning can be used together. He chose to
study checkers instead of chess because its relative simplicity made it possible to focus more strongly
on learning.

Samuel’s programs played by performing a lookahead search from each current position. They used
what we now call heuristic search methods to determine how to expand the search tree and when to stop
searching. The terminal board positions of each search were evaluated, or “scored,” by a value function,
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